洛社补习班名思教育教你高考数学解题思路 

概述:名思教育,专业一对一,免费晚托体验

刷新时间:
2018-12-11 14:34:47 点击2253次
服务区域:
江苏/无锡/惠山/洛社镇天奇城1-118名思教育
身份:
  • 专业教师
家教经验:
授课形式:
一对一
辅导科目:
数学,英语,语文,物理,化学
联系电话:
18114869656
信用:4.0  隐性收费:4.0
描述:4.0  产品质量:4.0
物流:4.0  服务态度:4.0
默认4分 我要打分

高考数学解题思想一:函数与方程思想
  函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。
  高考数学解题思想二:数形结合思想
  中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
  高考数学解题思想三:特殊与一般的思想
  用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。
  高考数学解题思想四:极限思想解题步骤
  极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
  高考数学解题思想五:分类讨论思想
  我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。

[本信息来自于今日推荐网]
无锡重发信息